¿Qué es la IA?
Por sí sola o combinada con otras tecnologías (por ejemplo, sensores, geolocalización, robótica), la IA puede realizar tareas que de otro modo requerirían inteligencia o intervención humana. Los asistentes digitales, la guía por GPS, los vehículos autónomos y las herramientas de inteligencia artificial generativa (como Chat GPT de Open AI) son solo algunos ejemplos de inteligencia artificial en las noticias diarias y en nuestra vida cotidiana.
Como campo de la informática, la inteligencia artificial abarca (y a menudo se menciona junto con) el aprendizaje automático y el aprendizaje profundo. Estas disciplinas implican el desarrollo de algoritmos de IA, modelados a partir de los procesos de toma de decisiones del cerebro humano, que pueden "aprender" de los datos disponibles y realizar clasificaciones o predicciones cada vez más precisas con el tiempo.
La inteligencia artificial ha pasado por muchos ciclos de exageración, pero incluso para los escépticos, el lanzamiento de ChatGPT parece marcar un punto de inflexión. La última vez que la IA generativa fue tan importante, los avances se produjeron en la visión por computadora, pero el salto se produce en el procesamiento de lenguaje natural (PLN). Hoy en día, la IA generativa puede aprender y sintetizar no solo el lenguaje humano sino también otros tipos de datos, como imágenes, vídeos, códigos de software e incluso estructuras moleculares.
Las aplicaciones para la IA crecen cada día. Pero a medida que se dispara el revuelo en torno al uso de herramientas de IA en las empresas, las conversaciones sobre la ética de la IA y la IA responsable se vuelven de vital importancia. Para obtener más información sobre la posición de IBM en estos temas, lea Generar confianza en la IA.
Comience su camino hacia la IA
Aunque varias definiciones de inteligencia artificial (IA) han surgido durante las últimas décadas, John McCarthy ofrece la siguiente definición en este documento del 2004 (enlace externo a ibm.com), "Es la ciencia e ingeniería de hacer máquinas inteligentes, especialmente programas informáticos inteligentes. Se relaciona con la tarea similar de usar equipos para comprender la inteligencia humana, pero la IA no tiene que ajustarse a los métodos biológicos observables".
Sin embargo, décadas antes de esta definición, el nacimiento de la conversación sobre inteligencia artificial lo marcó el trabajo fundamental de Alan Turing, "Computing Machinery and Intelligence" (enlace externo a ibm.com), que se publicó en 1950. En este artículo, Turing, a menudo referido como el "padre de la informática", hace la siguiente pregunta: "¿Pueden pensar las máquinas?" A partir de ahí, ofrece una prueba, ahora conocida como la "Prueba de Turing", en la que un interrogador humano intentaría distinguir entre una respuesta de texto de computadora y humana. Si bien esta prueba ha sido objeto de mucho escrutinio desde su publicación, sigue siendo una parte importante de la historia de la IA, así como un concepto continuo dentro de la filosofía, ya que utiliza ideas en torno a la lingüística.
Stuart Russell y Peter Norvig procedieron a publicar Inteligencia Artificial: Un Enfoque Moderno (enlace externo a ibm.com), convirtiéndose en uno de los principales libros de texto en el estudio de IA. En él, profundizan en cuatro posibles objetivos o definiciones de la IA, que diferencia los sistemas informáticos en función de la racionalidad y el pensamiento frente a la actuación:
Enfoque humano:
- Sistemas que piensan como humanos
- Sistemas que actúan como humanos
Enfoque ideal:
- Sistemas que piensan racionalmente
- Sistemas que actúan racionalmente
La definición de Alan Turing habría caído bajo la categoría de "sistemas que actúan como humanos".
En su forma más simple, la inteligencia artificial es un campo que combina la informática y conjuntos de datos robustos para permitir la resolución de problemas. También engloba los subcampos del aprendizaje automático y el aprendizaje profundo, que se mencionan con frecuencia junto con la inteligencia artificial. Estas disciplinas están compuestas por algoritmos de IA que buscan crear sistemas expertos que hagan predicciones o clasificaciones basadas en datos de entrada.
A lo largo de los años, la inteligencia artificial ha pasado por muchos ciclos de exageración, pero incluso para escépticos, el lanzamiento de ChatGPT de OpenAI parece marcar un punto de inflexión. La última vez que la IA generativa fue tan importante, los avances se produjeron en la visión por ordenador, pero ahora el salto adelante se produce en el procesamiento de lenguaje natural. Y no es solo lenguaje: los modelos generativos también pueden aprender la gramática del código de software, moléculas, imágenes naturales y una variedad de otros tipos de datos.
Las aplicaciones para esta tecnología están creciendo cada día, y apenas estamos empezando a explorar las posibilidades. Pero a medida que se extiende el uso de la IA en las empresas, las conversaciones sobre ética adquieren una importancia crítica. Para leer más sobre dónde se encuentra IBM dentro de la conversación en torno a la ética de la IA, lea más aquí.